.. _kernels: Supported integral kernels ========================== .. note:: :math:`\beta` denotes the inverse temperature in all equations below. .. _modified spherical Bessel function of the first kind: https://mathworld.wolfram.com/ModifiedSphericalBesselFunctionoftheFirstKind.html .. _fermiongf: Fermionic thermal Green's function ---------------------------------- :math:`A(\epsilon) = -(1/\pi)\Im G^\mathrm{ret}(\epsilon)` is the spectral function to be found. Enabled when `Som()` object is constructed with `kind = "FermionGf"`. - In imaginary time, :math:`G(\tau)` .. math:: G(\tau) = -\int\limits_{-\infty}^\infty d\epsilon \frac{e^{-\tau\epsilon}}{1+e^{-\beta\epsilon}} A(\epsilon). - At Matsubara frequencies, :math:`G(i\omega_n)` .. math:: G(i\omega_n) = \int\limits_{-\infty}^\infty d\epsilon \frac{1}{i\omega_n-\epsilon} A(\epsilon). - In Legendre polynomial basis, :math:`G(\ell)` .. math:: G(\ell) = -\int\limits_{-\infty}^\infty d\epsilon \frac{\beta\sqrt{2\ell+1}(-\mathrm{sgn}(\epsilon))^\ell i_{\ell}(\beta|\epsilon|/2)} {2\cosh(\beta\epsilon/2)} A(\epsilon), where :math:`i_\ell(x)` is the `modified spherical Bessel function of the first kind`_. Norm of a solution :math:`A(\epsilon)` is defined as .. math:: N = \int\limits_{-\infty}^\infty d\epsilon A(\epsilon). The default value :math:`N=1` can be overridden to perform analytical continuation of related fermionic quantities, such as self-energy. The retarded Green's function of a real frequency is reconstructed according to .. math:: G^\mathrm{ret}(\epsilon) = -\int\limits_{-\infty}^\infty d\epsilon' \frac{A(\epsilon')}{\epsilon' - \epsilon - i0}. .. _bosoncorr: Correlator of boson-like operators ---------------------------------- Enabled when `Som()` object is constructed with `kind = "BosonCorr"`. :math:`A(\epsilon)` is the spectral function to be found. It is defined differently from the fermionic case, namely :math:`A(\epsilon) = \Im\chi(\epsilon)/\epsilon`, where .. math:: \chi(\epsilon) = \int\limits_{-\infty}^\infty dt\ e^{i\epsilon t}\chi(t),\quad \chi(t) = i\theta(t)\langle[\hat O(t),\hat O^\dagger(0)]\rangle. - In imaginary time, :math:`\chi(\tau)` .. math:: \chi(\tau) = \int\limits_{-\infty}^\infty \frac{d\epsilon}{\pi} \frac{\epsilon e^{-\tau\epsilon}}{1-e^{-\beta\epsilon}} A(\epsilon). - At Matsubara frequencies, :math:`\chi(i\Omega_n)` .. math:: \chi(i\Omega_n) = \int\limits_{-\infty}^\infty d\epsilon \frac{1}{\pi}\frac{-\epsilon}{i\Omega_n - \epsilon} A(\epsilon). - In Legendre polynomial basis, :math:`\chi(\ell)` .. math:: \chi(\ell) = \int\limits_{-\infty}^\infty \frac{d\epsilon}{\pi} \frac{\beta\epsilon\sqrt{2\ell+1}(-\mathrm{sgn}(\epsilon))^\ell i_{\ell}(\beta|\epsilon|/2)} {2\sinh(\beta\epsilon/2)} A(\epsilon), where :math:`i_\ell(x)` is the `modified spherical Bessel function of the first kind`_. Norm of a solution :math:`A(\epsilon)` is defined as .. math:: N = \int\limits_{-\infty}^\infty d\epsilon A(\epsilon) = \pi\chi(i\Omega_n=0). The correlator of a real frequency is reconstructed according to .. math:: \chi(\epsilon) = \frac{1}{\pi}\int\limits_{-\infty}^\infty d\epsilon' \frac{\epsilon' A(\epsilon')}{\epsilon' - \epsilon - i0}. .. _bosonautocorr: Autocorrelator of a boson-like operator --------------------------------------- Enabled when `Som()` object is constructed with `kind = "BosonAutoCorr"`. :math:`A(\epsilon)` is the spectral function to be found. It is defined differently from the fermionic case, namely :math:`A(\epsilon) = \Im\chi(\epsilon)/\epsilon`, where .. math:: \chi(\epsilon) = \int\limits_{-\infty}^\infty dt\ e^{i\epsilon t}\chi(t),\quad \chi(t) = i\theta(t)\langle[\hat O(t),\hat O(0)]\rangle. Expressions in this section imply that :math:`A(-\epsilon) = A(\epsilon)`, and, therefore, it is enough to find the spectral function on the positive energy half-axis only. This condition is fulfilled by the dynamical susceptibilities of a form :math:`\chi(\tau) = \langle\mathcal{T}\hat O(\tau)\hat O(0)\rangle`, where :math:`\hat O` is a Hermitian operator. - In imaginary time, :math:`\chi(\tau)` .. math:: \chi(\tau) = \int\limits_0^\infty \frac{d\epsilon}{\pi} \frac{\epsilon (e^{-\tau\epsilon}+e^{-(\beta-\tau)\epsilon})} {1-e^{-\beta\epsilon}} A(\epsilon). - At Matsubara frequencies, :math:`\chi(i\Omega_n)` .. math:: \chi(i\Omega_n) = \int\limits_0^\infty d\epsilon \frac{1}{\pi}\frac{2\epsilon^2}{\Omega_n^2+\epsilon^2} A(\epsilon). - In Legendre polynomial basis, :math:`\chi(\ell)` .. math:: \chi(\ell) = \left\{ \begin{array}{ll} \int\limits_0^\infty \frac{d\epsilon}{\pi} \frac{\beta\epsilon\sqrt{2\ell+1} i_{\ell}(\beta\epsilon/2)} {\sinh(\beta\epsilon/2)} A(\epsilon), &\ell\ \mathrm{ even},\\ 0, &\ell\ \mathrm{odd}. \end{array}\right., where :math:`i_\ell(x)` is the `modified spherical Bessel function of the first kind`_. Norm of a solution :math:`A(\epsilon)` is defined as .. math:: N = \int\limits_0^\infty d\epsilon A(\epsilon) = \frac{\pi}{2}\chi(i\Omega_n=0). The correlator of a real frequency is reconstructed according to .. math:: \chi(\epsilon) = \frac{1}{\pi}\int\limits_{-\infty}^0 d\epsilon' \frac{\epsilon' A(-\epsilon')}{\epsilon' - \epsilon - i0} + \frac{1}{\pi}\int\limits_0^\infty d\epsilon' \frac{\epsilon' A(\epsilon')}{\epsilon' - \epsilon - i0}. .. _zerotemp: Correlation function at zero temperature ---------------------------------------- :math:`A(\epsilon) = -(1/\pi)\Im G(\epsilon)` is the spectral function to be found. Enabled when `Som()` object is constructed with `kind = "ZeroTemp"`. - In imaginary time, :math:`G(\tau)`, :math:`\tau\in[0;\tau_{max}]` .. math:: G(\tau) = -\int\limits_0^\infty d\epsilon\ e^{-\tau\epsilon} A(\epsilon). - At Matsubara frequencies, :math:`G(i\omega_n)`, where :math:`\omega_n = (2n+1)\pi/\tau_{max}` for fermionic correlation functions and :math:`\omega_n = 2n\pi/\tau_{max}` for bosonic. .. math:: G(i\omega_n) = \int\limits_0^\infty d\epsilon \frac{1}{i\omega_n-\epsilon} A(\epsilon). - In Legendre polynomial basis, :math:`G(\ell)` .. math:: G(\ell) = \int\limits_0^\infty d\epsilon \tau_{max}(-1)^{\ell+1}\sqrt{2\ell+1} i_{\ell}\left(\frac{\epsilon\tau_{max}}{2}\right) \exp\left(-\frac{\epsilon\tau_{max}}{2}\right) A(\epsilon), where :math:`i_\ell(x)` is the modified spherical Bessel function of the first kind. Norm of a solution :math:`A(\epsilon)` is defined as .. math:: N = \int\limits_0^\infty d\epsilon A(\epsilon). The correlation function of a real frequency is reconstructed according to .. math:: G(\epsilon) = -\int\limits_0^\infty d\epsilon' \frac{A(\epsilon')}{\epsilon' - \epsilon - i0}.