.. _example_zerotemp: Example: Matsubara correlator at zero temperature ================================================= Observable kind: :ref:`ZeroTemp `. Formally speaking, the imaginary time segment :math:`\tau\in[0;\beta)` turns into an infinite interval as :math:`\beta\to\infty`. Similarly, spacing between Matsubara frequencies goes to 0 in this limit, and the difference between fermionic and bosonic Matsubaras disappears. One can still define a correlation function on a finite time mesh :math:`\tau_i\in[0;\tau_{max}]`, and assume the function is zero for :math:`\tau>\tau_{max}`. In the frequency representation this corresponds to fictitious Matsubara spacing :math:`2\pi/\tau_{max}`. The spectral function is defined only on the positive half-axis of energy, since :math:`(1\pm e^{-\beta\epsilon})^{-1}` vanishes for negative :math:`\epsilon` in the zero temperature limit. Run analytical continuation --------------------------- .. literalinclude:: example.py Download input file :download:`example.h5`. Plot input and reconstructed imaginary-time correlators ------------------------------------------------------- .. plot:: examples/zerotemp/plot_g_tau.py :include-source: :scale: 100 Plot the spectral function -------------------------- .. plot:: examples/zerotemp/plot_g_w.py :include-source: :scale: 100