.. _virasoro_algebra: Virasoro algebra ================ Virasoro algebra is the central extension of a Lie algebra with wide applications in the two-dimensional conformal field theory. Its generators :math:`L_n, n \in \mathbb{Z}` satisfy commutation relations .. math:: [L_m, L_n] = (m - n) L_{m+n} + c(m^3 - m) \delta_{m, -n}, where :math:`c` is the central charge commuting with all generators. It was shown in [FNZ88]_ that the Virasoro algebra can be constructed out of just two generators :math:`L_3` and :math:`L_{-2}` using the following recurrence relations, .. math:: \begin{align} L_1 &= \frac{1}{5}[L_3, L_{-2}],\\ L_{-1} &= \frac{1}{3}[L_1, L_{-2}],\\ L_2 &= \frac{1}{4}[L_3, L_{-1}],\\ L_0 &= \frac{1}{2}[L_1, L_{-1}],\\ L_{n+1} &= \frac{1}{n-1}[L_n, L_1] \text{ for } n>2,\\ L_{-n-1} &= \frac{1}{1-n}[L_{-n}, L_{-1}] \text{ for } n>1. \end{align} In the example below, we show how to implement the Virasoro algebra in *libcommute*'s framework and use it to verify the recurrence relations stated above. .. literalinclude:: ../../examples/virasoro_algebra.cpp :language: cpp :lines: 25- :linenos: .. [FNZ88] "A presentation for the Virasoro and super-Virasoro algebras", D. B. Fairlie, J. Nuyts and C. K. Zachos , Commun. Math. Phys. **117**, pp. 595–614 (1988), https://doi.org/10.1007/BF01218387