.. _example_bosonautocorr: Charge susceptibility, longitudinal magnetic susceptibility and optical conductivity ==================================================================================== Correlator of a Hermitian operator :math:`\hat O` with itself is defined as .. math:: \chi(\tau) = \langle\mathbb{T}_\tau \hat O(\tau) \hat O(0)\rangle. Common examples of such correlators are the longitudinal magnetic susceptibility :math:`\langle\mathbb{T}_\tau \hat S_z(\tau) \hat S_z(0)\rangle`, the charge susceptibility :math:`\langle\mathbb{T}_\tau \hat N(\tau) \hat N(0)\rangle` and the optical conductivity :math:`\langle \mathbb{T}_\tau \hat j(\tau) \hat j(0)\rangle`. For the Hermitian operators, the auxiliary spectral function :math:`A(\epsilon) = \Im\chi(\epsilon)/\epsilon` is non-negative and symmetric. This kind of correlators is treated by the :ref:`BosonAutoCorr ` kernels, which are faster and more robust than :ref:`BosonCorr `. .. rubric:: Perform analytic continuation using the :ref:`BosonAutoCorr ` kernel .. literalinclude:: example.py Download input file :download:`input.h5`. .. rubric:: Plot input and reconstructed correlators at Matsubara frequencies .. plot:: examples/bosonautocorr/plot_chi_iw.py :include-source: :scale: 100 .. rubric:: Plot the correlator on the real frequency axis and its tail coefficients .. plot:: examples/bosonautocorr/plot_chi_w.py :include-source: :scale: 100 .. rubric:: Plot :math:`\chi`-histograms .. plot:: examples/bosonautocorr/plot_hist.py :include-source: :scale: 100